SEMIPARAMETRIC REGRESSION AND GRAPHICAL MODELS
نویسندگان
چکیده
منابع مشابه
Generalized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملHigh Dimensional Semiparametric Gaussian Copula Graphical Models
In this paper, we propose a semiparametric approach, named nonparanormal skeptic, for efficiently and robustly estimating high dimensional undirected graphical models. To achieve modeling flexibility, we consider Gaussian Copula graphical models (or the nonparanormal) as proposed by Liu et al. (2009). To achieve estimation robustness, we exploit nonparametric rank-based correlation coefficient ...
متن کاملEndogeneity in Nonparametric and Semiparametric Regression Models
This paper considers the nonparametric and semiparametric methods for estimating regression models with continuous endogenous regressors. We list a number of different generalizations of the linear structural equation model, and discuss how three common estimation approaches for linear equations — the “instrumental variables,” “fitted value,” and “control function” approaches — may or may not b...
متن کاملSemiparametric Binary Regression Models under Shape Constraints
We consider estimation of the regression function in a semiparametric binary regression model defined through an appropriate link function (with emphasis on the logistic link) using likelihood-ratio based inversion. The dichotomous response variable ∆ is influenced by a set of covariates that can be partitioned as (X,Z) where Z (real valued) is the covariate of primary interest and X (vector va...
متن کاملStochastic Search for Semiparametric Linear Regression Models
This paper introduces and analyzes a stochastic search method for parameter estimation in linear regression models in the spirit of Beran and Millar (1987). The idea is to generate a random finite subset of a parameter space which will automatically contain points which are very close to an unknown true parameter. The motivation for this procedure comes from recent work of Dümbgen, Samworth and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Australian & New Zealand Journal of Statistics
سال: 2009
ISSN: 1369-1473,1467-842X
DOI: 10.1111/j.1467-842x.2009.00538.x